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Method of Particular Solutions 

for Linear, Two-Point Boundary-Value Problems 

Part  2 - General Theory 
1 

ANGELO M I E L E ~  

Abstract. The methods commonly employed for solving linear, two-point 

boundary-value problems require the use of two sets of differential equations: the 

original set and the derived set. This derived set is the adjoint set if the method of 

adjoint equations is used, the Green's functions set if the method of Green's functions 

is used, and the homogeneous set if the method of complementary functions is used. 

With particular regard to high- speed digital computing operations, this report 

explores an alternate method, the method of particular solutions, in which only the 

original, nonhomogeneous set is used. A general theory is presented for a linear 

differential system of - nth order.  The boundary-value problem is solved by combining 

linearly several particular solutions of the origmal, nonhomogeneous set. Both the 

case of an uncontrolled system and the case of a controlled system are considered. 

~- ~ ~ 
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1. Introduction - 

In a previous paper (Ref. l), the two-point boundary-value problem was  

formulated for a linear differential system of the second order and solved using 

the method of particular solutions. Here, the theory is extended to  a system of 

- nth order.  Both the case of an uncontrolled system and the case of a controlled 

system a re  analyzed. 



3 

2 .  Uncontrolled Svstem 

AAR-49 

In this section, we consider the following linear, nonhomogeneous system of 

3 
order n: 

x .1 = A  x 1 +A12X 2 t..... + Alnxn + a 1 
11 

.2 1 2 n 2  x = A  x + A  x t..... + A 2 n ~  f a  21 22 

.................................... 

n n  x .n = A  x 1 + A  x 2 + . . . . . + A  x +a 
n l  n2 nn 

in which t is the independent variable, x j a r e  the dependent variables, and the dat 

sign denotes a derivative with respect t o  t. W e  assume that the coefficients A 

and a are time-dependent and continuous. We  also assume that the following p 

conditions are prescribed at t = 0: 

jk 
j 

1 2 n 1 Bllx (0) + B12x (0) + ..... + Blnx (0) = B 

B 2 1 ~  (0) + B 2 2 ~  (0) + ..... + B  1 2 n 2 x (0) = 8 2n 

...................................... 

B x 1 (O)+B x 2 ( O ) +  ..... + B  xn(0)=B P 
Pl  P2 Pn 

j J 
The system (1) can be called uncontrolled in that its trajectory in the tx -space 
is completely determined once the initial conditions are given. 
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j where the coefficients B and R a r e  constant. W e  also assume that the following q 

conditions are to  be met at t = 7 :  

jk 

1 2 n 1 CllX ( 7 )  + C12X ( 7 )  + . . . . . -i- c x ( 7 )  = y In  

1 2 n 2 c x ( 7 )  + c22x ( 7 )  + . .. .. + c x (7) = y 21 2n 

....................................... 

j where T is given and where the coefficients C. 

suppose that 

and y are constant. Finally, we 
Jk 

p t q  = n 

4 and that 

With this understanding, we  formulate t h e  following problem: Find the functions 

n n  ....., x = x  (t) 1 1  2 2  
x = x (t), x = x (t), 

which satisfy the differential system ( l ) ,  the initial conditions (2), and the final 

conditions ( 3 ) .  

-~ ---__--- 

If p 
computational effort. 

q ,  it is convenient to integrate Eqs.  (1) backward in order to reduce the 4 
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2.1. Matrix Formulation. In order to simpllfy the formal treatment, we define 

the following matrices: 

x =  

..... 

..... A 

B =  

..... 

..... 
................ 

Cll  C12 ..... Cln 

c21 c22 ..... C2n 

c=[cqlcq; . . . . .cq]  ................. 

9 x =  

7 a =  

9 B =  

2 Y =  

(7) 
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Clearly, the matrices x, 2 are n x 1; the matrices A ,  B, C are n x n, p x n, q x n, 

respectively; and the matrices a, 0, y are n x 1, p x 1, q x 1, respectively. With 

this understanding, Eqs . (1)- (3) become 5 

i = h + a  

WO) = 0 

CX(7) = Y 

AAR- 49 

where A,a are time-dependent, while B, 6 and C, y are constant. Thus, the 

previous problem consists of finding the function x(t) which satisfies the differential 

equation (1 1) subject to the initial condition (12) and the final condition (13). 

2 . 2 .  Solution Process. - In order to solve the proposed problem, we integrate 

Eq. (11) forward q + 1 times from t = 0 using q + 1 different sets of initial conditions 

and the stopping condition t = T. From these integrations, we obtain the functions 6 

x. = x.(t), i =  1, ....., q+l 
1 1  

each of which is a particular integral of ( l l ) ,  that is, it satisfies the relation 

2. =Ax.+a, i = 1, .  . . . .,q+l 
1 1 

In each integration, the prescribed initial condition (12) is employed. That is, 

x.(O) is such that 
1 

Bxi(0) = 0 , i = 1, .  . . . .,q+l (16) 

According to the accepted terminology, column matrices are called vectors. Therefore, 
x, i , cx .  are n-vectors, 0 is a p-vector, and y is a q-vector. 

Thc  subscript i denotes the generic integration. 

5 

6 
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We note that the matrices B and B are  p x n and p x 1; hence, Eq. (16) is equivalent 

to p scalar conditions. Since n initial conditions are needed, Eq. (16) must be 

completed by the relation 

BXi(O) = Pi, i = 1,. . . . .,q+1 

M M 

where the q x n constant matrix B and the q x 1 constant matrix 8. a r e  arbitrarily 
1 

prescribed. Hence, Eq. (17) is equivalent to q scalar conditions. As an example, 

the matrices and E .  can be chosen to  be 
1 

+... .oi 0 ..... 0 ; 0 1 : : : : : y  1 0  

> . . . . . . . . . . . . . . . . . . 
..... 0 1  0 0  ..... 1 

..... 0 ;  1 0  ..... ro 
0 ..... 0 0 1 ..... L; ....... 1 ......... 

..... 0 1 0 0  ..... 

w 

8. = 
1 

In the q x n matrix (18- l), the verticalpartitiongenerates two submatrices, a 

q x p submatrix to the left and a q x q submatrix to the right. In the q x 1 matrix 

(18-2), the symbol 6& denotes the Kroenecker delta. As a consequence, for each 

i, Eq. (18) leads to the q scalar conditions 

x ( O ) = S , ,  P+k i = l ,  ....., q+l, k = l ,  ....., q 
i 
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Next, we introduce the q + 1 undetermined, scalar constants k. and form the linear 
1 

combination 

q+l 
x = z  k x  

1= 1 i i  

Then, we inquire whether, by an appropriate choice of the constants, this linear 

combination can satisfy the differential equation ( l l ) ,  the initial condition (12), and 

the final condition (13). 

By suhstituting (20) into (1 1) and rearranging terms, we obtain the relation 

Since the functions (14) satisfy Eqs . (15), Eq. (21) becomes 

y1 k.a 1 = a 
i=l 

and is satisfied providing the constants are such that 

q+l 

1=1 
k i = l  

By substituting (20) into the initial condition (12) and rearranging te rms ,  we 

obtain the relation 

1 ki[Bxi(0)l = B 
i=l 
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which, in  the light of (16), can be rewritten as 
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I 

i 

q+l 
k.B=B 
1 1=1 

and is satisfied providing the constants are  consistent with (23). 

Finally, by substituting (20) into the final condition (13) and rearranging 

terms, we obtain the relation 

which is equivalent to q scalar  equations. Hence, (23) and (26) constitute a system of 

q + 1 scalar  equations 

solved in principle. 

2 . 3 .  Remarks. 

in the q + 1 constants ki. In this way, the proposed problem is 

The following comments a re  pertinent to the previous discussion: 

(a) The particular solutions (14) must be linearly independent. This can be 

achieved by a proper choice of the matrices fi and & appearing in Eqs . (17). 

(b) Because of the arbitrariness of the initial conditions for the particular 

solutions, it is conceivable that the matrix of the coefficients in Eqs. (23) and (26) 

may be ill-conditioned. Should this situation arise, corrective steps can be taken by 

changing some of the matrices in  Eqs . (17). 

j (c) Thus far, the continuity of the coefficients A and cx. has been assumed. 

Lf this restriction is removed, that is, if the coefficients exhibit a finite number of 

discontinuities, the previous results are still valid. The only difference is that, in  

jk  



10 AAR- 49 

the continuous case, the derivative k is a continuous function of time; while, in the 

discontinuous case, 2 exhibits discontinuities even though x is continuous. 

I 
2.4. - Relation to  the Method of Complementary Functions. -- Here, we establish 

a connection between t h e  method of particular solutions and the method of complementary 
i 

functions. First, we  solve Eq. (23) in terms of the constant k as follows: 
q+l 

k = l - l k i  
q+l i=l 

Next, we rewrite Eq. (20) in the form 

x =z k.y. t x  
1 1  q+l 

1= 1 

where, by definition, 

y . = x  - x  
1 i q+l’ i = l,.. ..., q 

We note that the complementary functions 

Yi = Y i W 7  i = 1,  . . . . . , q  

a r e  solutions of the following homogeneous system derived from (11): 

9 = Ay 

7 and that they a r e  subject to the initial conditions 

Byi(0) = 0 

Byi(0) = 13 - 8 
i q+l 

--- 7--------- 

(32) 

(33) 

Since the initial condition (17) is arbitrary, the initial condition (33) is arbitrary and 
can be changed, if necessary. 
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W e  also note that the function 

xq+l = xq+l(t) 

is a solution of the complete system (11) subject to the initial conditions 

Bx (0) = B s+l s+l 

The q constants k. must be determined from the final condition 
1 

a 

(34) 

(35) 

(36) 

which is equivalent to q scalar  equations. Therefore, in the method of complementary 

functions, the solution of (11) can be obtained by combining linearly the solutions (30) 

of the homogeneous system (31) and the solution (34) of the complete system (11). 

However, different initial conditions must be used: specifically, conditions (32)- (33) 

apply to  the homogeneous system and conditions (35)-(36) to the complete system. 

2.5. Final Time Unspecified. It is now assumed that the final time T is unspecified 

and that the differential equation (11) is subject to  the initial condition (12), the final 

condition (13), and the stopping condition 

(38) 
1 2 n D1x (T) + D2x (7) + . . . . . + Dnx (7) = 6 

in which the constant coefficients D and 6 are prescribed and T is to  be determined. k 
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In matrix form, Eq.  (38) can be rewritten as 

Dx(7) = 6 
I 

where D denotes the 1 x n constant matrix 

D = CD,,D, ,....., D 1 n 

AAR- 49 I 

(3  9) 

and 6 is a scalar.  

Once more, we integrate Eq. (11) forward q + 1 times from t = 0 using the initial 

conditions (16) and (17). After obtaining the solutions (14), we form the linear 

combination (20). Then, we note that this linear combination satisfies the differential 

equation (11) and the initial condition (12) providing the constants k.  are consistent with 

I 

1 

Next, we turn our attention to  the final conditions. 

and (39) and rearranging terms, we obtain the relations 

Equations (2 

ki[Cxi(~)l = y 
i=l 

By substituting (20) into (13) 

) are equivalent to  q -k 2 scLdr equations in which the 

i unknowns are the q + 1 constants k. and the time T. Elimination of the constants k 

from (23), (41), and (42) yields a determinantal equation which can be used in place 

1 
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of (39) as the stopping condition for the integration process and determines the final 

time T. Once T is known, the q + 1 constants k.  can be determined by solving (41) 

and (42). 

1 
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I 

3 .  Controlled System 
8 

Here, we consider the following modification of the previous system: 

.1 1 2 n 1  1 2 m 
x = A  x +A12x + . . . . . + A  x +a + E l l u  + E  u +..... +Elmu 11 In 12 

.2 1 2 n 2  1 2 m 
x = A  x + A  x + . . . . . + A  x t -a  + E  u + E  u + ..... + E 2 m ~  21 22 2n 21 22 

(43) .................................................................... 
.n 1 2 n n  1 2 m 
x = A  x t A d x  + . . . . . + A  x +a + E  u + E  u t ..... +Emu n l  M nl  n2 

j j in which t is the independent variable, x are the dependent variables, u are controls, and 

the dot sign denotes a derivative with respect to t .  W e  assume that the coefficients 

j 
TX. , E.  are time-dependent . We also assume that the following p conditions 

Ajk’ Jk 
are prescribed at t = 0: 

1 2 n 1 Bllx (0) + B12x (0) + ..... + Blnx (0) = 13 

BZlx (0) + B 2 2 ~  (0) + ..... -1 B2nxn(0) = B 
1 2 2 

....................................... 
1 2 B x (0) i- B x (0) + ..... 4- B xn(0) = E? 

P I  P2 Pn 

j where the  coefficients B. and B are constant. W e  also assume that the following q 

conditions are to be met at t = I-: 
Jk 

8 The system (43) can be called controlled in that its trajectory in the tx j -space depends 
not only on the initial conditions but also on the  time- history of the controls 
UJ (t) . 
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1 2 1 

1 2 n 2 

CllX (7) + CI2X (7) i . . . . . i c I n  xn(7) = y 

c x (T )+C x (7)+ ..... + c  x ( 7 ) = y  21 22 2n 

......................................... 
1 2 n 9 c x ( T ) + C  x (T)+ ..... + c  x ( 7 ) = y  

91 92 qn 

j where 7 is given and where the coefficients C 

suppose that 

and y are constant. Finally, we 
jk 

q g n  (46) 

With this understanding, we formulate the following problem: Find a set of functions 

(47) 
1 1  2 2  m m  

u = u (t), u = u (t), . . . . ., u = u (t) 

(45) 

(48) 
2 2  n n  x = x (t), . . . . ., x = x (t) 

1 1  x = x (t), 

which satisfy the differential system (43), the initial conditions (44), and the final 

conditions (45). We emphasize that (43) subject to (44)-(45) admits an infinite number 

of solutions. Nevertheless, we are concerned here with finding only one among these 

infinite solutions. 

3.1. Matrix Formulation. In order to simplify the formal treatment, we 

define the following matrices : 

1 

2 
X 

X 

n 
X 

, I  

.1 

.2 
X 

X 

.n 
X 

b .  

(4 9)  
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A =  [;;#####;:] ................. 

E =  

B =  

C =  

9 

..... 

..... 
.................. 

..... nm E 

..... 

..... 

................ 

..... B 

a =  

U =  

B =  

Y =  

1 

2 

a 

a 

n a 

m .  

1 
U 

2 
U 

m 
U - .  

. -  

2 
B 

RP 
I .  

1 
Y 

2 
Y 

I 
(51) I 

(53 1 
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Clearly, the matrices x, ? a r e  n x 1; the matrices A, E, B, C a r e  n x n, n x m, p x n, 

and q x n, respectively; and the matrices a, u, 6, y are n x 1, m x 1, p x 1, and q x 1, 

respectively. 
9 

With this understanding, Eqs . (43)- (45) become 

? = h t + + + E u  (54) 

where A,a,  E are time-dependent, while B, 8 and C, y a r e  constant. Thus, the 

previous problem consists of finding a pair of functions u(t), x(t) which satisfy the 

differential equation (54) subject to the initial condition (55) and the final condition (56). 

3.2. Solution Process. In order to solve this  problem, we integrate Eq. (54) 

forward q + 1 times from t = 0 using the initial condition (55), the stopping condition 

t = T, and q + 1 different time-histories of the control. In each integration, the 

control employed is 10 

u. = u p ) ,  i = 1, . . . . . , q+l 
1 

and the corresponding solution of Eq. (54) is denoted by 

x = Xi(t), i = 1,. . . . .,q+l 
i 

(57) 

9 
According t o  the accepted terminology, column matrices are called vectors. Therefore, 
x , k , a  a re  n-vectors, u is an  m-vector, 8 is a p-vector, and y is a q-vector. 

10 
The subscript i denotes the generic integration. 
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Since each function (58) is a particular integral of (54), we have 

i = 1,.  . . . . ,q+l 
i’ i = A x . + a + E u  i 1 

(59) 

In each integration, the prescribed initial condition (55) is employed. That is, 

x.(O) is such that 
1 

BXi(O) = P, i = 1, .. . . . ,q+l 

We  note that the matrices B and 6 a re  p x n and p x 1; hence, Eq. (60) is equivalent 

to p scalar conditions. Since n initial conditions are needed, Eq. (60) must be 

completed by the relation 

k ( 0 )  = P, i = 1, . . . . .,q+l 

where the matrix E is (n - p) x n and the matrix 

constant and arbitrarily prescribed. As an example, the matrices B and 6 can be 

chosen to be 

is (n - p) x 1. Both matrices are 
.-, M 

0 .... 0 

0 .... 0 

- = [  . . . . . . . 
0 .... 0 1,  I IO. . .  . 0 

I 
I 0 l.... 0 
I 
I 
I . * * * * . . *  

I 0 0  .... 1 
I 

- B =  [!I 
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where the submatrices in (62-  1) are q x p and q x q, respectively. Therefore, for 

each i, Eq. (62) leads to the q scalar conditions 

2+k(o) = 1, i = 1, . . . . . , q+l, k = 1 , .  ..,q 
1 

Next, we introduce the q + 1 undetermined, scalar constants k. and form the 
1 

linear corn binat ions 

q+1 
u =I kiui , 

1=1 i= 1 

Then, we inquire whether, by an appropriate choice of the constants, these linear 

combinations can satisfy the differential equation (54), the initial condition (55), and 

the f inal  condition (56). 

By substituting (64) into (54) and rearranging terms, we obtain the relation 

2 k [i - Axi - Eui] = u 
1=1 

i i  

Since the functions (57)-(58) satisfy Eqs. (59), Eq. (65) becomes 

kiu = a 
1=1 
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and is satisfied providing the constants are such that 

y l k i = l  
i=l 

By substituting (64-2) into the initial condition (55) and rearranging terms,  we 

obtain the relation 

k.[Bxi(0)l 1 = B 
1=1 

which, in the light of (60), can be rewritten as 

2’ k.B 1 = B 
1=1 

and is satisfied providing the constants are consistent with (67). 

Finally, by substituting (64-2) into the final condition (56) and rearranging 

terms,  we obtain the relation 

Ql 1 ki[Cxi(7)l = y 
1=1 

which is equivalent to q scalar equations. Hence, (67) and (70) constitute a system of 

q + 1 scalar equations in the q -1- 1 constants k.. In this way, the proposed problem is 
1 

solved in principle. 

3 . 3 .  -- Final Time Unspecified. It is now assumed that the final time T is unspecified 

and that the differential equation (54) is subject to the initial condition (55), the final 

condition (56), and the stopping condition 

1 2 n D1x (7) + D2x (7) + . . . . . + D x ( 7 )  = 6 n 
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in which the constant coefficients D and 6 are prescribed and T is to be determined. 

In matrix form, Eq. (71) can be rewritten as 

k 

Dx(7) = 6 

where D denotes the 1 x n constant matrix 

D = CD,,D2, . . . . ,D 1 
n (73) 

and 6 is a scalar.  

Once more, we integrate Eq. (54) forward q + 1 times from t = 0 using the initial 

conditions (60)-(61) and q + 1 different time-histories of the control. In each 

integration, the control employed is (57), and (58) is the corresponding solution. 

W e  note that the linear combinations (64) satisfy the differential equation (54) and 

the initial condition (55) providing the constants k. are consistent with (67). 
1 

Next, we turn our attention to the final conditions. By substituting (64-2) into (56) 

and (72) and rearranging terms, we obtain the relations 

Equations (67), (74), and (75) a r e  equivalent to q + 2 scalar equations in which the 

unknowns are the q + 1 constants k. and the time 7 .  Elimination of the constants k 1 i 

from (67), (74), and (75) yields a determinantal equation which can be used in place 
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of (72) as the stopping condition for  the integration process and determines the final 

time T. Once T i s  known, the q + 1 constants k. can be determined by solving (74) and 
1 

(75) 

I 

I 
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APPENDIX A 

General Solution for an Uncontrolled Svstem 

The technique derived in  Section 2 can also be employed to  find the general 

solution of (11) in the closed interval EO, T] . To do so, we integrate the differential 

equation (1 1) n + 1 times from t = 0 using n + 1 different sets of initial conditions, 

for instance, 

iXi(O) = QO), i = 1,. . . . .,n+l 

A n 

where the matrix B is n x n and the matrix 6 is n x 1 .  Both matrices are constant and 

11 
arbitrarily prescribed. From the integrations, we olseain the particular solutions 

x. = Xi(t), i = 1, . . . . ., n+l 
1 

Next, we introduce the n + 1 undetermined, scalar constants k. and form the 
1 

linear combination 

n+l 
x =z kixi 

1=1 

Then, we inquFre whether, by an appropriate choice of the constants, this linear 

combination can satisfy the differential equation (1 1). Simple manipulations, 

omitted for the sake of brevity, show that this is precisely the case providing the 

constants are such that 
n+l 

i=l 
k . = 1  
1 

'The initial conditions (76) a r e  assumed to be such that the particular solutions 
(77) a r e  linearly independent. 

(77) 
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A .  1. Relation to ________ the Method of Complementary Functions. Here, we establish 

a connection between the method of particular solutions and the method of complementary 

functions. First, we combine Eqs . (78) and (79) to obtain 

x = L  k.y. +x 
1 1 n f l  i=l 

where, by definition 

y . = x  - x  i = 1, ....., n 
1 i n+l’ 

W e  note that each complementary function 

Yi = Yi(t)9 i = 1 ,....., n 

is a solution of t h e  homogeneous equation (31) derived from (11). Therefore, Eq. (80) 

expresses a well-known theorem: The general solution of a linear, nonhomogeneous equation 

is the sum of the general solution of the corresponding homogeneous equation and a 

particular solution of the complete equation. 

A .  2. Remark. The general solution (78) of Eq. (11) contains n + 1 independent 

solutions. On the other hand, in the boundary-value problem represented by Eqs . (11)- 

(13), q + 1 independent solutions were employed. This apparent anomaly is now explained. 

If Eq. (78) is combined with the initial condition ( 2)  and the final condition (13), the 

following relations a r e  obtained: 



25 

n+l 
r 

k.[Ek(O)l 1 = 6 
1=1 

n+l 

1=1 
z kiCCXi(T)l = Y 

and, together with (79), determine the constants k.. 
1 

Assume now that the functions (77) satisfy the initial condition (12). This is 

equivalent to stating that the matrix B can be partitioned into the matrices B and 6 

and that the matrix $. can be partitioned into the matrices S and E. (see Section 2). 

Therefore, the initial condition (76) splits into the separate conditions 

A 

1 1 

q o )  = 6, i = 1,. .. . .,n+l 

k ( 0 )  = Bi' i = 1, . . . . .,n+l 

Equation (83) becomes 
n+l L kip = B 
i=l 

AAR- 49 

(83) 

and, therefore, is identical with (79). Since the system composed of Eqs. (79), (83), 

and (84) admits an infinite number of solutions, it is entirely permissible to  set 

k. 1 = 0, i = q+2,. . . . . ,n+l (88) 

12 
that is, integrate the system (11) q + 1 times . This was precisely done in Section 2. 

12 
Clearly, only q + 1 independent solutions satisying the initial condition (12) exist. 
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